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Abstract

In this paper the problem of laminar, transient, two-dimensional free convective heat transfer from the surface of a horizontal

elliptic tube is considered. The tube, whose surface is suddenly subjected to uniform heat flux, is placed in a quiescent Boussinesq

Newtonian fluid with its major axis horizontal. The details of both flow and thermal fields are obtained by solving the full governing

Navier–Stokes and energy equations. These equations, expressed in terms of stream function, vorticity and temperature, are nu-

merically solved using an implicit spectral finite difference procedure. The parameters involved are the modified Rayleigh number,

Prandtl number and axis-ratio. The investigation covers a Rayleigh number range up to 107. The minor–major axis ratio of elliptic

cylinder ranges between 0.05 and 0.998 and Prandtl number ranges between 0.1 and 10. The effects of these parameters on the

surface temperature distribution and heat transfer coefficients are determined and the different aspects of the results are discussed for

some selected cases.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Free convection; Heat transfer; Elliptic tube; Boussinesq Newtonian fluid; Unsteady; Temperature; Thermal; Computation
1. Introduction

The process of free convective heat transfer from the

surface of a body to the surrounding fluid is of great

importance in the field of thermo-fluid mechanics. This
process is of technological importance in the design of

heat exchanger devices and solar collectors, and cooling

of electrical and electronic components and many oth-

ers. One body shape of particular importance is a cy-

lindrical tube, and in the design of heat exchangers,

special interest was directed to tubes of elliptic cross-

section since they were found to create less resistance to

cooling fluid which results in less pumping power.
Although in heat exchangers the forced convection is

dominant, the free convection becomes the dominant

mode of heat transfer in case of power failure. More-

over, elliptical tube geometry is general enough to en-

compass all elliptical cross-sections between the limiting

cases of a circular cylinder and a flat plate which enables

academic researchers to verify their results by compar-
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ing them with well known previous results for these two

limiting cases (e.g. Sparrow and Gregg, 1956; Koh,

1964; Kim et al., 1975; Fujii and Imura, 1972).

As well known, in the thermo-fluid mechanics com-

munity, in buoyancy driven flow problems the thermal
boundary conditions play an important role in deter-

mining both flow and thermal fields. These boundary

conditions are mainly the prescribed surface tempera-

ture and the prescribed surface heat flux. In the case of

prescribed surface temperature the heat transfer rate

calculations and control are of main interest whereas in

the case of prescribed heat flux the surface temperature

distribution is of great importance. Although most of
the previous studies have focused on constant surface

temperature boundary condition, the case of uniform

surface heating is practically important.

Relatively few theoretical and experimental studies

have been carried out on problems concerning free

convection from elliptic tubes. Lin and Chao (1974)

investigated the steady natural convection from two-

dimensional and axisymmetric isothermal bodies with
an arbitrary cross-section. In their study the special

cases of circular and elliptic cylinders were considered.
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Nomenclature

a, b semi-major and semi-minor axes lengths [m]

Ar minor to major axis ratio, b=a
c0 eccentricity of the ellipse

cv specific heat [J kg�1 K�1]

Fx0 , Fy0 x0 and y0 components of the buoyancy force

[N]

fn functions defined in (9a)

g gravitational acceleration [m s�2]
gn functions defined in (9b)

h, �hh local and average heat transfer coefficients

[Wm�2 K�1]

H0, Hn functions defined in (9c)

k thermal conductivity [Wm�1 K�1]

Nu, Nu local and average Nusselt numbers

P perimeter [m]

Pr Prandtl number (m=a)
q prescribed (constant) heat flux [Wm�2]

Ra modified Rayleigh number ðgbð2aÞ3aq=kvaÞ
t dimensional time [s]

T dimensional temperature of fluid [K]

x, y dimensionless Cartesian coordinates [m]

Y � the dimensionless distance from the tube

surface [m] ðY � ¼ x0�b
2a Ra0:25 along the line

g ¼ 0, Y � ¼ y0�a
2a Ra0:25 along the line g ¼ 90�Þ

Greeks

a fluid thermal diffusivity [m2 s�1]

b coefficient of volumetric thermal expansion

[K�1]

e dimensionless ratio, a=c0

n, g elliptic coordinates [m]

n0 constant defined by tanh�1 Ar

l dynamic viscosity [Pe s]
m kinematic viscosity [m2 s�1]

q fluid density [kgm�3]

s dimensionless time

H dimensionless temperature, kðT � T1Þ=aq
w dimensionless stream function

1 dimensionless vorticity

Subscripts

m mean

s, o cylinder surface

1 infinite distance from the surface

Superscript
0 dimensional quantity
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The study was based on the solution of boundary-layer

equations which have the drawback of being non-ap-

plicable in the buoyant plume region. Raithby and

Hollands (1976) studied the problem of steady natural

convection from an elliptic cylinder with a vertical plate

and a horizontal circular cylinder as special cases. Both

isothermal and constant heat flux boundary conditions

were considered with emphasis on isothermal surface
cases. In their work, a thin layer analysis applicable only

to thin boundary-layer flow was modified to take into

consideration the effects of thick boundary layer re-

sulting at low Rayleigh numbers. The average Nusselt

numbers for steady-state flow were found to be in a

good agreement with the experimental data for a wide

range of Rayleigh numbers. Merkin (1977) studied the

symmetrical case of the same problem for various ec-
centricities in both cases when the major axis was hor-

izontal or vertical. The numerical results, based on the

solution of boundary-layer equations, were presented

for the cases of constant surface temperature and con-

stant surface heat flux. The obtained results have the

same drawback mentioned in the work by Lin and

Chao. Huang and Mayinger (1984) investigated the

steady free convection from an isothermal elliptic tubes
for different orientations and for different axis ratios.

The local and average Nusselt numbers were reported,
together with correlations for average Nusselt number.

Purely numerical studies on free convection from iso-

thermal horizontal elliptic tubes include the work by

Badr and Shamsher (1993) and Badr (1997). Both of

these studies were based on the solution of full conser-

vation equations of mass, momentum, and energy with

no boundary-layer simplifications. Badr and Shamsher

solved the problem of free convection from an elliptic
cylinder for Rayleigh numbers ranging from 10 to 103,

and axis ratios ranging from 0.1 to 0.964. Badr investi-

gated the effects of the tube orientations in the axis ratio

range 0:46Ar6 0:98 at the two Rayleigh numbers of

103 and 104. The study by Badr and Shamsher focused

on the final steady-state solution with no details re-

ported on the transient results unlike Badr�s work. The
most recent numerical studies on mixed convection from
an elliptic tube placed in a fluctuating free stream were

made by Ahmad and Badr (2001, 2002). It is noted that

the velocity and temperature fields in the presence of a

fluctuating free stream are different from the present

case (quiescent fluid).

To our knowledge, from a survey of existing litera-

ture, there is a lack of detailed information on the free

transient convection from elliptic tubes whose surface is
suddenly subjected to uniform heat flux. This is the

motivation of the present work in which the same
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problem is considered and the unsteady full Navier–

Stokes and energy equations for laminar, two-dimen-

sional flow of Boussinesq fluid are solved.
2. Problem formulation

The problem considered is that of a long horizontal

tube of an elliptic cross-section with semi-major axis

length a, placed in a quiescent Boussinesq Newtonian

fluid of infinite extent as shown in Fig. 1. The tube and

the stagnant fluid around the tube have the same initial
temperature T1 at time t < 0. At time t ¼ 0 the tube

surface is suddenly heated with uniform heat flux q.
Right after this time the difference between the mean

temperature of the tube surface and the temperature of

the far-field gives rise to the buoyancy force to develop

and cause the fluid motion. The tube is considered to be

long enough so that the end effects can be neglected and

accordingly the induced flow can be assumed two-di-
mensional. The viscous dissipation and the effect of

temperature variation on fluid properties are considered

negligible except for the body force term in momentum

equation (the Boussinesq approximation).

Assuming time dependent flow in the ðx0; y0Þ plane the
conservation equations of mass, momentum and energy

in terms of the vorticity f0, stream function w0 and

temperature T can be written as

of0

ot
þ ow0

oy 0
of0

ox0
� ow0

ox0
of0

oy0
¼ vr2f0 þ 1

q
oFy0
ox0

�
� oFx0

oy 0

�
; ð1Þ

f0 ¼ �r2w0; ð2Þ

oT
ot

þ ow0

oy0
oT
ox0

� ow0

ox0
oT
oy 0

¼ k
qcv

r2T ; ð3Þ

where

r2 ¼ o2

ox02
þ o2

oy02
;

Fig. 1. Physical model and coordinate system.
Fx0 , and Fy0 are the x0 and y0 components of the buoyancy

force and defined as

Fx0 ¼ qgbðT � T1Þ and Fy0 ¼ 0:

The boundary conditions are mainly the no-slip and

impermeability conditions on the tube surface and the

stagnant ambient conditions far away from it. The

boundary condition can be expressed as

w0 ¼ ow0

ox0
¼ 0 and q ¼ �k

oT
on

¼ const:

on the tube surface; ð4aÞ

ow0

ox0
! 0;

ow0

oy0
! 0 and T ! T1

far away from the tube surface; ð4bÞ

where n is the dimensional coordinate normal to the

surface. The dimensionless variables are related to their
counterparts through

x ¼ x0

a
; y ¼ y0

a
; t ¼ ta

a2
; w ¼ w0

a
;

f ¼ �f0
a2

a
and H ¼ kðT � T1Þ

aq
:

For accurate numerical treatment we introduce el-

liptic coordinates n, g that are better suited for the geo-

metry of the problem

nþ ig ¼ sinh�1 xþ iyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Ar2

p :

The line g ¼ 0 coincides with the vertical line along the

minor-axis of the ellipse and passes through the center

of the tube cross-section as shown in Fig. 1. The surface

of the elliptic tube is defined by the constant

n0 ¼ tanh�1 Ar. Using the elliptic coordinate system,

with the origin at the center of the tube, Eqs. (1)–(3) in

dimensionless form become

J
of
ot

¼ Pr
o2f

on2

�
þ o2f
og2

�
þ ow

on
of
og

� ow
og

of
on

þ RaPr
8e

cosh n sin g
oH
on

�
þ sinh n cos g

oH
og

�
; ð5Þ

Jf ¼ o2w

on2
þ o2w

og2
; ð6Þ

J
oH
ot

¼ o2H

on2

�
þ o2H

og2

�
þ ow

on
oH
og

� ow
og

oH
on

; ð7Þ

where J ¼ ðcosh2 n� sin2 gÞð1�Ar2Þ is the determinant

of the Jacobian of transformation matrix. The velocity

components in n and g directions are then defined as

Ug ¼ � 1

J 1=2

ow
on

and Vn ¼
1

J 1=2

ow
og

:

The boundary conditions (4) can now be expressed as
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w ¼ ow
on

¼ 0;
ow
og

¼ 0 and
oH
on

¼ �J 1=2 at n ¼ n0;

ð8aÞ

ow
on

! 0;
ow
og

! 0 and H ! 0 as n ! 1: ð8bÞ

The initial conditions (at times t < 0) are the stationary

conditions and uniform temperature distribution

(H ¼ 0) in the entire field. At the start of computations

t ¼ 0, the tube surface is suddenly heated with uniform

heat flux (oH
on ¼ �J 1=2 on the tube surface) and this mo-

ment represents the start of the time development of flow

and thermal fields. The main mathematical problem is to

predict the details of both fields as time increases.
3. The method of solution

The method of solution is in principle similar to that

developed by Collins and Dennis (1973), and Badr and

Dennis (1985). The velocity and temperature fields are

symmetric about the vertical line g ¼ 0 passing through
the tube center. Accordingly the stream function w,
vorticity f and temperature H are approximated using

Fourier series expansions as

w ¼
XN
n¼1

fnðn; tÞ sinðngÞ; ð9aÞ

f ¼
XN
n¼1

gnðn; tÞ sinðngÞ; ð9bÞ

H ¼ H0ðn; tÞ þ
XN
n¼1

Hnðn; tÞ cosðngÞ; ð9cÞ

where N is the order of truncation in the Fourier series.

Substituting Eqs. (9a)–(9c) in Eqs. (5)–(7), after using

simple mathematical analysis, results in the following set

of differential equations

o2fn
on2

� n2fn

¼ 1

2e2
cosh 2ngn

�
� 1

2
gðnþ2Þ
�

þ sgnðn� 2Þgjn�2j
��

; ð10Þ

cosh 2n
ogn
ot

� 1

2

ogðnþ2Þ

ot

�
þ sgnðn� 2Þogjn�2jot

�

¼ 2e2Pr
o2gn
on2

�
� n2gn

�
þ Sn; ð11Þ

cosh 2n
o

ot
H0

Hn

� �
� 1

2

o

ot
H2

Hðnþ2Þ

� �
� 1

2

o

ot
0

Hjn�2j

� �

¼ 2e2
o2

on2
H0

Hn

� �
� 2n2e2

0
Hn

� �
þ Z0

Zn

� �
: ð12Þ
Here e ¼ ð1�Ar2Þ�1=2
, sgnðn� 2Þ is the sign of term

(n� 2) and gjn�2j ¼ 0;Hjn�2j ¼ H0 and sgnðn� 2Þ ¼ 0

when n ¼ 2. The functions Sn, Z0 and Zn are defined as

Sn ¼
XN
m¼1

ðkfk � jfjÞ
ogm
on

� m sgnðm
 

� nÞ ofj
on

� ofk
on

!
gm;

Z0 ¼ �2
XN
n¼1

n
o

on
ðfnHnÞ;

Zn ¼
XN
m¼1

ðkfk � jfjÞ
oHm

on
� m sgnðm

�
� nÞ ofj

on
� ofk

on

�
Hm;

where j ¼ jm� nj, k ¼ mþ n. The boundary conditions

for the functions fnðn; tÞ, gnðn; tÞ, H0ðn; tÞ and Hnðn; tÞ are
deduced from Eq. (8) and can be expressed as

fn ¼
ofn
on

¼ 0 and
oH
2on

þ
XN
1

oHn

on
cosðngÞ ¼ �J 1=2

at n ¼ n0; ð13aÞ

1

J 1=2

ofn
og

;
1

J 1=2

ofn
on

; gn; H0;Hn ! 0 as n ! 1:

ð13bÞ
Integrating the both sides of Eq. (10) with respect to n,
after multiplying by e�nn, from n ¼ n0 to 1 and using
the boundary conditions (13), we obtain the integral

conditionZ 1

n0

e�nn cosh2ngn

�
þ 1

2
½gðnþ2Þ þ sgnðn� 2Þgjn�2j�

�
dn¼ 0:

ð14Þ
This condition gives a constraint on the vorticity and

is used to calculate the values of the function gn on the

tube surface, instead of the gradient condition (8b), to

calculate the surface vorticity distribution.
4. Numerical integration procedure

The solution procedure and the details of the nu-

merical technique for solving Eqs. (10)–(12) subject to

(13) and satisfying the integral condition (14) is based on

the method developed by Collins and Dennis (1973),

and Badr and Dennis (1985). Although the differential

equations (10)–(12) and boundary and integral condi-

tions are different from those used in the above men-
tioned works, the numerical procedure is almost the

same and a brief description of the numerical method is

given below.

The numerical integration of Eqs. (10)–(12) starts at

t ¼ 0 by setting

oH0

2on
þ
XN
1

oHn

on
cosðngÞ ¼ �J 1=2
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at n ¼ n0 while equating all other Fourier coefficients to

zero in the entire domain. This simulates the sudden

surface heating by uniform heat flux which initially re-

sults in a sudden rise of the surface temperature from T1
to Ts. The far field conditions at n ! 1 are enforced at a

distance that can reach a maximum of nmax ¼ n0 þ 10,

which corresponds to a very large distance away from

the tube surface. Such far-away boundary ensures that

the conditions at infinity are appropriately incorporated

in the numerical solution. The number of points in the n
direction is taken as 200 with a grid size taken as 0.05 for

most of the cases. However, the grid size is reduced for
relatively high Rayleigh number cases (Ra > 105).

The numerical scheme used for advancing the solu-

tion of w, f and H through one time step is in principle

similar to that used given by Collins and Dennis (1973),

and Badr and Dennis (1985). The only difference is the

appearances of derivatives ogðnþ2Þ=ot, ogjn�2j=ot in Eq.

(11). When solving for gn, the functions with subscripts

(nþ 2) are unknown. These unknown functions
ogðnþ2Þ=ot are taken care by approximating their values

at time (t þ Dt) to be initially the same as at time t and
then updating these values through an iterative proce-

dure. The iterative process stopped when the difference

in the solution of gn, between two successive iterations

falls into a given tolerance of 10�6. The integral condi-

tion was utilized to determine gn on the tube surface. Eq.

(10) is solved using a step-by-step integration scheme. A
straightforward finite-difference solution for this equa-

tion results in an extremely unstable solution especially

for large values of N .

Solution procedure for Eq. (12) uses an implicit

method of Crank-Nicolson and is similar to that used

for Eq. (11) except that boundary values of oH0=on,
oHn=on at n ¼ n0 are completely known and there are no

integral conditions. The solution of the three equations
(10)–(12) is repeated until a convergence criteria similar

to that used for determining gn is achieved.

To obtain reasonably accurate solution, a small time

step of Dt ¼ 10�5 is considered for the first 10 time steps

then is increased to Dt ¼ 10�4 for the next 10 time steps.

In the rest of the solution the time step is increased to a

certain value which depends on the value of Ra. The
higher the Ra is the smaller the time step should be. The
number of terms in Fourier series is taken as 5 terms at

the start of the numerical calculations and more terms

are added with the increase of the time. One more term

is added at a time when the last non-zero term reaches

the value of 10�4. The maximum number of terms N
used for most of the cases considered in this study is 40.

Once the velocity and temperature fields are calcu-

lated, the local and average Nusselt numbers as well as
the mean surface temperature can be obtained. The local

Nusselt number is defined as

Nu ¼ 2ah=k; ð15Þ
where h is the local heat transfer coefficient defined as

h ¼ q=ðTs � T1Þ:
Using the above definitions, the Nu can be expressed

in terms of H0 and Hn as

Nu ¼ 4

H0 þ 2
PN

1 Hn cosðngÞ
: ð16Þ

The average Nusselt number is defined as

Nu ¼ 2a�hh=k;

where �hh is the average heat transfer coefficient. The av-

erage Nusselt number is related to the mean surface

temperature, Hm by

NuHm ¼ 2; ð17Þ
where Hm is defined as

Hm ¼ 1

P

Z P

0

HdP : ð18Þ

Here P is the perimeter of the elliptic section.
5. Verification of the method of solution and discussion of

results

The accuracy of the method of solution is verified by

considering a number of cases for which theoretical re-
sults are available for comparison.

In Fig. 2, the average Nusselt number Nu results for

the special case of a circular cylinder (Ar ¼ 1) heated

uniformly with constant heat flux, reported by Raithby

and Hollands (1976, see p. 79, Eq. (33) and Table 6), are

compared with the case of elliptic tube with axis ratio

Ar ¼ 0:998 (almost circular cylinder) considered in this

study. This figure shows a good agreement between the
results, with maximum percentage difference in Nu less

than 7%. Fig. 3 shows the surface temperature distri-

bution in case of Ar ¼ 0:75 and Pr ¼ 1 obtained in this

study and those reported by Merkin (1977) for the three

Rayleigh numbers of 103, 105 and 107. It is noted that

Merkin�s study was based on the boundary-layer ap-

proximation which may be the limiting case as Ra ! 1
for laminar flow excluding the plume region. The dif-
ference between the results is clearly pronounced in the

plume region near g ¼ 0, and also in neighborhood of

g ¼ 87� where steep surface curvature exists. At

Ra ¼ 103 (relatively low Rayleigh number), Merkin�s
result for the surface temperature distribution deviates

significantly from the result obtained in this study with

maximum percentage difference of 45% in the neigh-

borhood of g ¼ 87�. However, as Ra increases, the
maximum percentage difference between the two results

decreases. The maximum percentage difference of 20%

occurs near g ¼ 87� at Ra ¼ 105, whereas the maximum

percentage difference of 22% occurs near g ¼ 0 at

Ra ¼ 107.



Fig. 4. Comparison of the temperature distribution along the ellipse

surface obtained in this study with the boundary-layer solution (BLS)

results given by Merkin (1977) for the case of Ra ¼ 107 and Pr ¼ 1:0 at

Ar ¼ 0:25, 0.5, 0.75.

Fig. 3. Comparison of the temperature distribution along the ellipse

surface obtained in this study with the boundary-layer solution (BLS)

results given by Merkin (1977) for the case of Ar ¼ 0:75 and Pr ¼ 1:0

at Ra ¼ 103, 105, 107.

Fig. 2. Comparison between the average Nusselt number values for the

range of Ra, 1:06Ra6 108, obtained in this study (Ar ¼ 0:998) and the

results given by Raithby and Hollands (1976) for a circular cylinder

(Ar ¼ 1:0).
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The numerical results of the surface temperature

distribution obtained in this study are also compared

with Merkin�s results for the case of Ra ¼ 107 and Pr ¼ 1

at the three different axis ratio Ar ¼ 0:25, 0.5 and 0.75 as

shown in Fig. 4. At such relatively high Ra the agree-

ment between the two solutions is quite good at all

points except in the aforementioned two regions, namely
near g ¼ 87� and g ¼ 0. The figure also indicates that

with the increase of Ar, the agreement between the two

solutions improves in the neighborhood of g ¼ 87�. On

the other hand, the increase of Ar has a reverse effect on
this agreement in the buoyant plume region near g ¼ 0.

That is as Ar increases from 0.25 to 0.75 the percentage

difference between the results (i) decreases from 34% to

4% (in the region near g ¼ 87�) and (ii) increases from

11% to 22% (in the region near g ¼ 0).
In the following, we will present results for a range of

modified Rayleigh number up to 107, a range of Prandtl

number between 0.1 and 10 and a range of axis ratio

between 0.05 and 0.998. Fig. 5 shows the time variation

of average Nusselt number Nu for the case of Ra ¼ 104

and Ar ¼ 0:5 and at the three Prandtl numbers of 0.1,

1.0, 10. The figure clearly shows that the general varia-

tion of Nusselt number is similar to that for isothermal
elliptic and/or circular tube (see for example Mahfouz

and Badr, 1999). As expected, Nu takes very high values

at small times since the thermal layer starts with small

thickness following the sudden tube surface heating. The

sharp decrease in Nu at small times reflects the rapid

growth of the thermal layer. The conduction mode of

heat transfer at this early time stages dominates due to

the negligibly small flow velocities. As the time goes, the
decrease in Nu continues until it reaches its steady value

at a certain time. The transition from conduction mode

domination to convection mode domination takes the

form of overshoot in a average heat transfer coefficient

(i.e. in Nu). At later times the buoyancy force effect

prevails with Nu gradually approaching the steady-state

value. In Fig. 6 the time variation of mean surface

temperatureHm is shown for the same cases presented in
Fig. 5. Since the heat flux at the tube surface is constant

the mean surface temperature are inversely related as

stated in Eq. (17). As expected, Figs. 5 and 6 indicate

that the effect of increase in the average heat transfer

coefficient (or in Nu) is to decrease the steady-state mean



Fig. 5. The effect of Prandtl number on the time variation of the av-

erage Nusselt number for the case of Ra ¼ 104 and Ar ¼ 0:5.

Table 1

Effect of Rayleigh number Ra, axis ratio, Ar, and Prandtl number, Pr
on mean surface temperature Hm

Ar Pr H

Ra ¼ 103 Ra ¼ 104 Ra ¼ 105

0.25 0.1 0.887 0.638 0.448

1 0.697 0.490 0.332

10 0.631 0.435 0.290

0.5 0.1 0.813 0.579 0.394

1 0.663 0.461 0.310

10 0.595 0.408 0.273

0.75 0.1 0.798 0.562 0.384

1 0.656 0.451 0.304

10 0.587 0.401 0.268

Fig. 7. The effect of axis ratio on the local Nusselt number distribution

along the ellipse surface for the case of Ra ¼ 105 and Pr ¼ 1:0.

Fig. 6. The effect of Prandtl number on the time variation of mean

surface temperature for the case of Ra ¼ 104 and Ar ¼ 0:5.
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temperature as the tube surface temperature gets cooled

(or as Pr increases) when Ra ¼ 104 and Ar ¼ 0:5. It is
noted that in a recent work by Aydin and Guessous

(2001) a dimensionless parameter is introduced for the

correlation of the heat transfer in natural convection

from uniformly heated vertical plate in the case of a

constant wall heat flux. This dimensionless parameter

depends on the Prandtl number and Rayleigh number.

In their work dimensional arguments in terms of the

boundary layer lead to a Nu � ½Ra=ð1þ Pr�1Þ�1=5 de-
pendence for the laminar heat transfer case which is

consistent with existing published data (see for example

Bejan, 1995; Chen and Wang, 1996).

Table 1 summarizes the effects of Rayleigh number,

Ra, Prandtl number, Pr, and axis ratio, Ar, on the
steady-state mean surface temperature Hm. The results

of Table 1 shows that effect of increase of Ra is to de-

crease the steady-state mean surface temperature for

fixed values of both Pr and Ar. This is expected since

with the increase of Ra, convection current intensity

increases, leading to a decrease in Hm. It is noted that

Hm decreases with the increase of Pr for fixed values of

both Ra and Ar.
The effect of tube axis ratio on the local Nusselt

number distribution is shown in Fig. 7 for the case of

Ra ¼ 105 and Pr ¼ 1. Tubes with smaller axis ratio have

higher Nu values in the range of g ¼ 60�–120� while the

differences are relatively small on the rest of the tube. All

the curves in Fig. 7 posses a minimum at the topmost

point on the tube surface (g ¼ 0). As g increases from

topmost point (g ¼ 0), Nu increases for all values of Ar,
reaching a maximum and then gradually decreases till

the forward stagnation point at g ¼ 180�. The only ex-

ception in the case of Ar ¼ 0:998 where Nu continues to

increase reaching its maximum value at g ¼ 180�. It is



Fig. 9. The effect of Prandtl number on the temperature distribution

with distance along the minor axis (g ¼ 0�) and along the major axis

(g ¼ 90�) for the case of Ra ¼ 104 and Ar ¼ 0:5.
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noted that with the increase of Ar not only the maxi-

mum value gets smaller but also the rate of decrease in

Nu toward the front stagnation decreases. This leads to

an increase in Nu at g ¼ 180� as Ar increases. Fig. 8
shows the surface temperature distribution, Hs, for the

same cases presented in Fig. 7. This figure verifies that

there is an inverse relationship between Hs and Nu as

shown in Fig. 7. Thus the surface temperature reaches

its minimum value at the point of maximum heat

transfer coefficient (i.e. maximum Nu). Also, the effect of

decrease of Ar is to decrease the steady mean surface

temperature.
Fig. 9 shows the steady-state temperature decay

along the extension of ellipse major axis (g ¼ 0�) and

minor axis (g ¼ 90�) for the case of Ra ¼ 104 and

Ar ¼ 0:5 at the three Prandtl numbers of 0.1, 1.0, 10.

The temperature gradient at the tube surface Y � ¼ 0 at

the two end of both minor and major axis (g ¼ 0�,
g ¼ 90�) is the same for fixed Pr. This confirms the fact

that the heat flux is constant. Also, as Pr increases the
temperature at the tube surface decreases as a result of

increasing heat transfer coefficient. Moreover, slow

temperature decay within the plume region is observed

along the minor axis (g ¼ 0�) whereas the decay along

the major axis g ¼ 90� is much faster, showing a thinner

thermal boundary layer along g ¼ 90�. However, as Pr
increases the thermal boundary layer becomes thinner

resulting in much faster temperature decay along
g ¼ 90�. The velocity distribution in g direction along

the ellipse major axis g ¼ 90� is also shown in Fig. 10

for the same case presented in Fig. 9. The figure shows

that the velocity increases rapidly near the surface until

it attains a maximum value and then decreases, ap-

proaching the zero value far away from the surface. This

distance at which the velocity approaches zero value
Fig. 8. The effect of axis ratio on the temperature distribution along the

ellipse surface for the case of Ra ¼ 105 and Pr ¼ 1:0.
increases as Pr increases as a result of increasing the

boundary-layer thickness.

Fig. 11 shows the effect of Pr on the streamline and
isotherm patterns following a sudden tube heating for

the case of Ra ¼ 104 and Ar ¼ 0:5 at t ¼ 1 when the

thermal field in the vicinity of the tube surface almost

reaches the steady state. This figure verifies that at

higher values of Pr the thermal boundary layer gets

thinner and the flow field approaches to the steady state

very rapidly as it was observed in Fig. 6. The streamline

and isotherm patterns are shown in Fig. 12 for the case
of Ra ¼ 105, Pr ¼ 1:0 and the three axis ratios of 0.25,
Fig. 10. The g-velocity component distribution with distance along the

major axis (g ¼ 90�) for the case of Ra ¼ 104, Ar ¼ 0:5 and at Pr ¼ 0:1,

1.0, 10.



Fig. 11. The streamlines (right) and isotherms patterns (left) at time

t ¼ 1 for the case of Ra ¼ 104 and Ar ¼ 0:5: (a) Pr ¼ 0:1, (b) Pr ¼ 1:0,

(c) Pr ¼ 10.

Fig. 12. The streamlines (right) and isotherms patterns (left) at time

t ¼ 0:6 for the case of Ra ¼ 105 and Pr ¼ 1:0: (a) Ar ¼ 0:25, (b)

Ar ¼ 0:5, (c) Ar ¼ 0:75.
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0.5 and 0.75 at t ¼ 0:6. The figure shows that the effect
of the axis ratio on the streamlines and isotherms es-

pecially near the tube surface. At Ar ¼ 0:25 the flow

separation from the tube surface is observed. On the

other hand there is no flow separation for the axis ratios

of Ar ¼ 0:5 and 0.75. Also, axis ratio seems to have no

effects on the flow and the thermal fields far away from

the tube surface. Moreover, the patterns of Fig. 12

shows that as the ellipse gets thinner the flow resistance
increases, resulting in a decrease in average heat transfer

coefficient (i.e. an increase of mean surface tempera-

ture). This is consistent with the results of Table 1.
6. Conclusions

The problem of laminar free convection from a hori-
zontal tube of elliptic cross-section is investigated when

the tube is suddenly heated with uniform flux. The tube
is placed in an initially quiescent fluid of infinite extent.

The full governing equations of motion and energy are

solved in order to predict the details of the velocity and

thermal boundary layers. The study is focused on the
effects of modified Rayleigh number, Prandtl number

and axis ratio. The results are obtained in the ranges of

Rayleigh number 103 6Ra6 107, Prandtl number

0:16 Pr6 10 and axis ratio 0:056Ar6 0:998. The

method of solution is verified by comparing the average

Nusselt number as well as the surface temperature dis-

tribution with the available theoretical data. The

agreement is found to be satisfactory. The details of the
velocity and thermal boundary layers are obtained and

accordingly the velocity distribution at a given section;

average Nusselt number as well as mean temperature

distributions are determined for various cases. In addi-

tion the variations of vorticity, the local Nusselt number

and temperature distribution are calculated over the

cylinder surface. The streamlines and isotherms patterns

are plotted for different Rayleigh numbers to show some
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details of the velocity and temperature fields. This study

reveals that the average Nusselt number increases with

the increase of Rayleigh number and/or Prandtl number,

resulting in a decrease in mean surface temperature. The
results are also examined at high Rayleigh numbers and

it is observed that the buoyancy driven flow separates

from the tube surface at low values of Prandtl number

when the axis ratio is small.
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