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Abstract

In this paper the problem of laminar, transient, two-dimensional free convective heat transfer from the surface of a horizontal
elliptic tube is considered. The tube, whose surface is suddenly subjected to uniform heat flux, is placed in a quiescent Boussinesq
Newtonian fluid with its major axis horizontal. The details of both flow and thermal fields are obtained by solving the full governing
Navier—Stokes and energy equations. These equations, expressed in terms of stream function, vorticity and temperature, are nu-
merically solved using an implicit spectral finite difference procedure. The parameters involved are the modified Rayleigh number,
Prandtl number and axis-ratio. The investigation covers a Rayleigh number range up to 107. The minor—-major axis ratio of elliptic
cylinder ranges between 0.05 and 0.998 and Prandtl number ranges between 0.1 and 10. The effects of these parameters on the
surface temperature distribution and heat transfer coefficients are determined and the different aspects of the results are discussed for

some selected cases.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The process of free convective heat transfer from the
surface of a body to the surrounding fluid is of great
importance in the field of thermo-fluid mechanics. This
process is of technological importance in the design of
heat exchanger devices and solar collectors, and cooling
of electrical and electronic components and many oth-
ers. One body shape of particular importance is a cy-
lindrical tube, and in the design of heat exchangers,
special interest was directed to tubes of elliptic cross-
section since they were found to create less resistance to
cooling fluid which results in less pumping power.

Although in heat exchangers the forced convection is
dominant, the free convection becomes the dominant
mode of heat transfer in case of power failure. More-
over, elliptical tube geometry is general enough to en-
compeass all elliptical cross-sections between the limiting
cases of a circular cylinder and a flat plate which enables
academic researchers to verify their results by compar-
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ing them with well known previous results for these two
limiting cases (e.g. Sparrow and Gregg, 1956; Koh,
1964; Kim et al., 1975; Fujii and Imura, 1972).

As well known, in the thermo-fluid mechanics com-
munity, in buoyancy driven flow problems the thermal
boundary conditions play an important role in deter-
mining both flow and thermal fields. These boundary
conditions are mainly the prescribed surface tempera-
ture and the prescribed surface heat flux. In the case of
prescribed surface temperature the heat transfer rate
calculations and control are of main interest whereas in
the case of prescribed heat flux the surface temperature
distribution is of great importance. Although most of
the previous studies have focused on constant surface
temperature boundary condition, the case of uniform
surface heating is practically important.

Relatively few theoretical and experimental studies
have been carried out on problems concerning free
convection from elliptic tubes. Lin and Chao (1974)
investigated the steady natural convection from two-
dimensional and axisymmetric isothermal bodies with
an arbitrary cross-section. In their study the special
cases of circular and elliptic cylinders were considered.
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Nomenclature

a, b semi-major and semi-minor axes lengths [m]

Ar minor to major axis ratio, b/a

led eccentricity of the ellipse

C specific heat [Jkg™!' K]

F., Fy x' and ) components of the buoyancy force
[N]

I functions defined in (9a)

g gravitational acceleration [ms?]

2 functions defined in (9b)

h, h local and average heat transfer coefficients
Wm2K™1

H,y, H, functions defined in (9¢)

k thermal conductivity [Wm~' K]

Nu, Nu local and average Nusselt numbers

P perimeter [m]

Pr Prandtl number (v/o)

q prescribed (constant) heat flux [W m2]

Ra modified Rayleigh number (gf(2a)’aq/kvo)

t dimensional time [s]

T dimensional temperature of fluid [K]

X,y dimensionless Cartesian coordinates [m]

Y* the dimensionless distance from the tube

surface [m] (Y* =*=£Ra"* along the line
n=0, Y =%Ra"*> along the line n = 90°)

Greeks

o fluid thermal diffusivity [m?s™]

p coefficient of volumetric thermal expansion
[K~']

€ dimensionless ratio, a/c'

En elliptic coordinates [m]

&o constant defined by tanh™' Ar

u dynamic viscosity [Pe s]

v kinematic viscosity [m?s~']

P fluid density [kgm™3]

T dimensionless time
dimensionless temperature, k(T — T.,)/aq

W dimensionless stream function

o dimensionless vorticity

Subscripts

m mean

S, 0 cylinder surface

00 infinite distance from the surface

Superscript

!

dimensional quantity

The study was based on the solution of boundary-layer
equations which have the drawback of being non-ap-
plicable in the buoyant plume region. Raithby and
Hollands (1976) studied the problem of steady natural
convection from an elliptic cylinder with a vertical plate
and a horizontal circular cylinder as special cases. Both
isothermal and constant heat flux boundary conditions
were considered with emphasis on isothermal surface
cases. In their work, a thin layer analysis applicable only
to thin boundary-layer flow was modified to take into
consideration the effects of thick boundary layer re-
sulting at low Rayleigh numbers. The average Nusselt
numbers for steady-state flow were found to be in a
good agreement with the experimental data for a wide
range of Rayleigh numbers. Merkin (1977) studied the
symmetrical case of the same problem for various ec-
centricities in both cases when the major axis was hor-
izontal or vertical. The numerical results, based on the
solution of boundary-layer equations, were presented
for the cases of constant surface temperature and con-
stant surface heat flux. The obtained results have the
same drawback mentioned in the work by Lin and
Chao. Huang and Mayinger (1984) investigated the
steady free convection from an isothermal elliptic tubes
for different orientations and for different axis ratios.
The local and average Nusselt numbers were reported,

together with correlations for average Nusselt number.
Purely numerical studies on free convection from iso-
thermal horizontal elliptic tubes include the work by
Badr and Shamsher (1993) and Badr (1997). Both of
these studies were based on the solution of full conser-
vation equations of mass, momentum, and energy with
no boundary-layer simplifications. Badr and Shamsher
solved the problem of free convection from an elliptic
cylinder for Rayleigh numbers ranging from 10 to 103,
and axis ratios ranging from 0.1 to 0.964. Badr investi-
gated the effects of the tube orientations in the axis ratio
range 0.4 <Ar<0.98 at the two Rayleigh numbers of
10° and 10*. The study by Badr and Shamsher focused
on the final steady-state solution with no details re-
ported on the transient results unlike Badr’s work. The
most recent numerical studies on mixed convection from
an elliptic tube placed in a fluctuating free stream were
made by Ahmad and Badr (2001, 2002). It is noted that
the velocity and temperature fields in the presence of a
fluctuating free stream are different from the present
case (quiescent fluid).

To our knowledge, from a survey of existing litera-
ture, there is a lack of detailed information on the free
transient convection from elliptic tubes whose surface is
suddenly subjected to uniform heat flux. This is the
motivation of the present work in which the same
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problem is considered and the unsteady full Navier—
Stokes and energy equations for laminar, two-dimen-
sional flow of Boussinesq fluid are solved.

2. Problem formulation

The problem considered is that of a long horizontal
tube of an elliptic cross-section with semi-major axis
length a, placed in a quiescent Boussinesq Newtonian
fluid of infinite extent as shown in Fig. 1. The tube and
the stagnant fluid around the tube have the same initial
temperature 7, at time ¢ < 0. At time ¢ =0 the tube
surface is suddenly heated with uniform heat flux q.
Right after this time the difference between the mean
temperature of the tube surface and the temperature of
the far-field gives rise to the buoyancy force to develop
and cause the fluid motion. The tube is considered to be
long enough so that the end effects can be neglected and
accordingly the induced flow can be assumed two-di-
mensional. The viscous dissipation and the effect of
temperature variation on fluid properties are considered
negligible except for the body force term in momentum
equation (the Boussinesq approximation).

Assuming time dependent flow in the (x',)’) plane the
conservation equations of mass, momentum and energy
in terms of the vorticity ¢, stream function ¥/ and
temperature 7 can be written as

o oy ol oy o 2 1 [OF, OF,
o W o W % - _ 1
Ty way Vet W
CI = _vZ!//’7 (2)
oT oy'oT oy oT K _,
ot + oy o o oy pcvv ’ (3)
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Fig. 1. Physical model and coordinate system.

F., and F, are the x’ and ' components of the buoyancy
force and defined as

Fo=pgh(T — T)

The boundary conditions are mainly the no-slip and
impermeability conditions on the tube surface and the
stagnant ambient conditions far away from it. The
boundary condition can be expressed as

and F, =0.

' T
W/:%:O and q:—ka—:const.
o/ on
on the tube surface, (4a)
% — 0, % —0 and T — T,
o’ oy’
far away from the tube surface, (4b)

where n is the dimensional coordinate normal to the
surface. The dimensionless variables are related to their
counterparts through

X yV to W'

X =—, Y= t:_27 =
a a a o
2 KT = T.)

For accurate numerical treatment we introduce el-
liptic coordinates &, i that are better suited for the geo-
metry of the problem

Xty
\/1—Ar2.

The line n = 0 coincides with the vertical line along the
minor-axis of the ellipse and passes through the center
of the tube cross-section as shown in Fig. 1. The surface
of the elliptic tube is defined by the constant
& = tanh ™' Ar. Using the elliptic coordinate system,
with the origin at the center of the tube, Egs. (1)-(3) in
dimensionless form become

O [ R\ o oY

&+1in =sinh™'

4Rt [00sh£sinna—@+5inhf°05”a_@ B

8¢ o¢ on
Yy Py
J{= 6—52 e (6)
00 ?e 'O oy 00 Oy 0O
J——(—z —2>+—l//———lp—v, (7)
ot &t o o¢ dn  on o¢

where J = (cosh? & — sin’ 7)(1 — Ar?) is the determinant
of the Jacobian of transformation matrix. The velocity
components in ¢ and # directions are then defined as

1 oy 1oy

The boundary conditions (4) can now be expressed as

U, =
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oy oy 26

= — = = _ = — 1/2 =
v 2 0, an 0 and E J at &= ¢,
(8a)
?é 0, Z‘f] —0 and O —0 asé— oo (8b)

The initial conditions (at times z < 0) are the stationary
conditions and uniform temperature distribution
(@ = 0) in the entire field. At the start of computations
t = 0, the tube surface is suddenly heated with uniform
heat flux (22 = —J'/? on the tube surface) and this mo-
ment represents the start of the time development of flow
and thermal fields. The main mathematical problem is to
predict the details of both fields as time increases.

3. The method of solution

The method of solution is in principle similar to that
developed by Collins and Dennis (1973), and Badr and
Dennis (1985). The velocity and temperature fields are
symmetric about the vertical line 7 = 0 passing through
the tube center. Accordingly the stream function i,
vorticity { and temperature @ are approximated using
Fourier series expansions as

Y= fu(&1)sin(ny), (9a)
EN: Jsn(nn), (9b)
O = Hy(&1) + Y Hy(¢,1) cos(nn), (%)

where N is the order of truncation in the Fourier series.
Substituting Egs. (9a)-(9¢) in Egs. (5)—(7), after using
simple mathematical analysis, results in the following set
of differential equations

0%f,
Gl

1 1
=53 (cosh 28g, — 3 [gni2) + sgn(n — 2)gp2 ] ), (10)

- n2fn

og,, 0g(n
cosh2é g _ 2 | S +sgn(n— 2)0g|,—2/0t
2 ot
2
282Pr(aa§2"n2g,,> +3,, (11)

o(H,\ 10[ H 1 18] 0
h2e s g .9
o8 é@t(Hn> 2ar[ M} 261[1%”2&

() () (2) o

Here ¢ = (1 — Ar’) "%, sgn(n —2) is the sign of term
(n—2) and g5 =0,H),_5 =Hy, and sgn(n—2) =0
when n = 2. The functions S,, Z, and Z, are defined as

N Sen o
S,,Z(kﬁc—jﬁ)ég—é—m<sgn(m_ )6_2_6_?>gm7

= of,
Zkfk—]f,— m(sgn(m )a—éj—a—?>Hm,

where j = |m — n|, k = m + n. The boundary conditions
for the functions f,(&,¢), g.(&, 1), Hy(&,¢) and H, (&, ¢t) are
deduced from Eq. (8) and can be expressed as

N
fn:af":O and a—H—FZaH (nn) = —J"/?

o¢ 20¢ o¢
at i = 607 (133)
1 of, 1 of,
mav Wa—g’ & HoH,— 0 asé— oo.

(13b)

Integrating the both sides of Eq. (10) with respect to &,
after multiplying by e, from ¢ = &, to oo and using
the boundary conditions (13), we obtain the integral
condition

o 1
/ e (cosh 28g,+ 3 [g(n+2) +sgn(n — Z)g,,z]) d¢=o0.
<o

(14)

This condition gives a constraint on the vorticity and
is used to calculate the values of the function g, on the
tube surface, instead of the gradient condition (8b), to
calculate the surface vorticity distribution.

4. Numerical integration procedure

The solution procedure and the details of the nu-
merical technique for solving Eqgs. (10)-(12) subject to
(13) and satisfying the integral condition (14) is based on
the method developed by Collins and Dennis (1973),
and Badr and Dennis (1985). Although the differential
equations (10)—(12) and boundary and integral condi-
tions are different from those used in the above men-
tioned works, the numerical procedure is almost the
same and a brief description of the numerical method is
given below.

The numerical integration of Eqs. (10)-(12) starts at
t = 0 by setting

0H, <<~ 0H,
RPN

() = —J'/2
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at ¢ = ¢, while equating all other Fourier coefficients to
zero in the entire domain. This simulates the sudden
surface heating by uniform heat flux which initially re-
sults in a sudden rise of the surface temperature from 7,
to T,. The far field conditions at & — oo are enforced at a
distance that can reach a maximum of &, = &, + 10,
which corresponds to a very large distance away from
the tube surface. Such far-away boundary ensures that
the conditions at infinity are appropriately incorporated
in the numerical solution. The number of points in the ¢
direction is taken as 200 with a grid size taken as 0.05 for
most of the cases. However, the grid size is reduced for
relatively high Rayleigh number cases (Ra > 10°).

The numerical scheme used for advancing the solu-
tion of ¥, { and ® through one time step is in principle
similar to that used given by Collins and Dennis (1973),
and Badr and Dennis (1985). The only difference is the
appearances of derivatives 0g(,.2)/0t, 0g|,—» /0t in Eq.
(11). When solving for g,, the functions with subscripts
(n+2) are unknown. These unknown functions
0g(n+2)/0t are taken care by approximating their values
at time (¢ + Af) to be initially the same as at time ¢ and
then updating these values through an iterative proce-
dure. The iterative process stopped when the difference
in the solution of g,, between two successive iterations
falls into a given tolerance of 107°. The integral condi-
tion was utilized to determine g, on the tube surface. Eq.
(10) 1s solved using a step-by-step integration scheme. A
straightforward finite-difference solution for this equa-
tion results in an extremely unstable solution especially
for large values of N.

Solution procedure for Eq. (12) uses an implicit
method of Crank-Nicolson and is similar to that used
for Eq. (11) except that boundary values of 0H,/0¢,
OH, /0& at & = &, are completely known and there are no
integral conditions. The solution of the three equations
(10)—(12) is repeated until a convergence criteria similar
to that used for determining g, is achieved.

To obtain reasonably accurate solution, a small time
step of At = 107 is considered for the first 10 time steps
then is increased to Ar = 10~ for the next 10 time steps.
In the rest of the solution the time step is increased to a
certain value which depends on the value of Ra. The
higher the Ra is the smaller the time step should be. The
number of terms in Fourier series is taken as 5 terms at
the start of the numerical calculations and more terms
are added with the increase of the time. One more term
is added at a time when the last non-zero term reaches
the value of 10~*. The maximum number of terms N
used for most of the cases considered in this study is 40.

Once the velocity and temperature fields are calcu-
lated, the local and average Nusselt numbers as well as
the mean surface temperature can be obtained. The local
Nusselt number is defined as

Nu = 2ah/k, (15)

where 7 is the local heat transfer coefficient defined as
h = Q/(Ts - TOO)
Using the above definitions, the Nu can be expressed
in terms of Hy and H, as
4

Nu = = .
Hy+ 25" H,cos(nn)

(16)

The average Nusselt number is defined as
Nu = 2ah/k,
where £ is the average heat transfer coefficient. The av-

erage Nusselt number is related to the mean surface
temperature, @, by

Nu®,, =2, (17)
where @, is defined as

1 P
O :;/0 OdP. (18)

Here P is the perimeter of the elliptic section.

5. Verification of the method of solution and discussion of
results

The accuracy of the method of solution is verified by
considering a number of cases for which theoretical re-
sults are available for comparison.

In Fig. 2, the average Nusselt number Nu results for
the special case of a circular cylinder (Ar = 1) heated
uniformly with constant heat flux, reported by Raithby
and Hollands (1976, see p. 79, Eq. (33) and Table 6), are
compared with the case of elliptic tube with axis ratio
Ar = 0.998 (almost circular cylinder) considered in this
study. This figure shows a good agreement between the
results, with maximum percentage difference in Nu less
than 7%. Fig. 3 shows the surface temperature distri-
bution in case of Ar = 0.75 and Pr = 1 obtained in this
study and those reported by Merkin (1977) for the three
Rayleigh numbers of 10°, 10° and 107. It is noted that
Merkin’s study was based on the boundary-layer ap-
proximation which may be the limiting case as Ra — oo
for laminar flow excluding the plume region. The dif-
ference between the results is clearly pronounced in the
plume region near n = 0, and also in neighborhood of
n = 87° where steep surface curvature exists. At
Ra =103 (relatively low Rayleigh number), Merkin’s
result for the surface temperature distribution deviates
significantly from the result obtained in this study with
maximum percentage difference of 45% in the neigh-
borhood of n = 87°. However, as Ra increases, the
maximum percentage difference between the two results
decreases. The maximum percentage difference of 20%
occurs near # = 87° at Ra = 10°, whereas the maximum
percentage difference of 22% occurs near n =0 at
Ra =10".
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Fig. 2. Comparison between the average Nusselt number values for the
range of Ra, 1.0 < Ra < 103, obtained in this study (Ar = 0.998) and the
results given by Raithby and Hollands (1976) for a circular cylinder
(Ar = 1.0).

1.4
Ar=0.75, Pr=1.0
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0 300  60° 90 120° 150" 180
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Fig. 3. Comparison of the temperature distribution along the ellipse
surface obtained in this study with the boundary-layer solution (BLS)
results given by Merkin (1977) for the case of Ar =0.75 and Pr=1.0
at Ra = 103, 10°, 107.

The numerical results of the surface temperature
distribution obtained in this study are also compared
with Merkin’s results for the case of Ra = 107 and Pr = 1
at the three different axis ratio Ar = 0.25, 0.5 and 0.75 as
shown in Fig. 4. At such relatively high Ra the agree-
ment between the two solutions is quite good at all
points except in the aforementioned two regions, namely
near n = 87° and n = 0. The figure also indicates that
with the increase of Ar, the agreement between the two
solutions improves in the neighborhood of # = 87°. On
the other hand, the increase of Ar has a reverse effect on

0.40
Ra=10", Pr=1.0
Present —
020 N\ BLS: Merkn (1677) Ar_ ?‘25
| Theeeeeoio-o
0.00

0.00
0.20 \\ Ar=0.75
0.00 ; : . T

° ¥ ° 1200 150 180

90

Fig. 4. Comparison of the temperature distribution along the ellipse
surface obtained in this study with the boundary-layer solution (BLS)
results given by Merkin (1977) for the case of Ra = 107 and Pr = 1.0 at
Ar=10.25,0.5, 0.75.

this agreement in the buoyant plume region near n = 0.
That is as Ar increases from 0.25 to 0.75 the percentage
difference between the results (i) decreases from 34% to
4% (in the region near # = 87°) and (ii) increases from
11% to 22% (in the region near n = 0).

In the following, we will present results for a range of
modified Rayleigh number up to 107, a range of Prandtl
number between 0.1 and 10 and a range of axis ratio
between 0.05 and 0.998. Fig. 5 shows the time variation
of average Nusselt number Nu for the case of Ra = 10*
and Ar = 0.5 and at the three Prandtl numbers of 0.1,
1.0, 10. The figure clearly shows that the general varia-
tion of Nusselt number is similar to that for isothermal
elliptic and/or circular tube (see for example Mahfouz
and Badr, 1999). As expected, Nu takes very high values
at small times since the thermal layer starts with small
thickness following the sudden tube surface heating. The
sharp decrease in Nu at small times reflects the rapid
growth of the thermal layer. The conduction mode of
heat transfer at this early time stages dominates due to
the negligibly small flow velocities. As the time goes, the
decrease in Nu continues until it reaches its steady value
at a certain time. The transition from conduction mode
domination to convection mode domination takes the
form of overshoot in a average heat transfer coefficient
(i.e. in Nu). At later times the buoyancy force effect
prevails with Nu gradually approaching the steady-state
value. In Fig. 6 the time variation of mean surface
temperature @y, is shown for the same cases presented in
Fig. 5. Since the heat flux at the tube surface is constant
the mean surface temperature are inversely related as
stated in Eq. (17). As expected, Figs. 5 and 6 indicate
that the effect of increase in the average heat transfer
coefficient (or in Nu) is to decrease the steady-state mean
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Fig. 5. The effect of Prandtl number on the time variation of the av-
erage Nusselt number for the case of Ra = 10* and Ar = 0.5.
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T

Fig. 6. The effect of Prandtl number on the time variation of mean
surface temperature for the case of Ra = 10* and Ar = 0.5.

temperature as the tube surface temperature gets cooled
(or as Pr increases) when Ra = 10* and Ar = 0.5. It is
noted that in a recent work by Aydin and Guessous
(2001) a dimensionless parameter is introduced for the
correlation of the heat transfer in natural convection
from uniformly heated vertical plate in the case of a
constant wall heat flux. This dimensionless parameter
depends on the Prandtl number and Rayleigh number.
In their work dimensional arguments in terms of the
boundary layer lead to a Nu ~ [Ra/(1 +Pr1)]"° de-
pendence for the laminar heat transfer case which is
consistent with existing published data (see for example
Bejan, 1995; Chen and Wang, 1996).

Table 1 summarizes the effects of Rayleigh number,
Ra, Prandtl number, Pr, and axis ratio, Ar, on the

Table 1

Effect of Rayleigh number Ra, axis ratio, Ar, and Prandtl number, Pr

on mean surface temperature @y,

Ar Pr 2]
Ra =10 Ra = 10* Ra = 10°

0.25 0.1 0.887 0.638 0.448
1 0.697 0.490 0.332
10 0.631 0.435 0.290
0.5 0.1 0.813 0.579 0.394
1 0.663 0.461 0.310
10 0.595 0.408 0.273
0.75 0.1 0.798 0.562 0.384
1 0.656 0.451 0.304
10 0.587 0.401 0.268

steady-state mean surface temperature @,,. The results
of Table 1 shows that effect of increase of Ra is to de-
crease the steady-state mean surface temperature for
fixed values of both Pr and Ar. This is expected since
with the increase of Ra, convection current intensity
increases, leading to a decrease in @,. It is noted that
O, decreases with the increase of Pr for fixed values of
both Ra and Ar.

The effect of tube axis ratio on the local Nusselt
number distribution is shown in Fig. 7 for the case of
Ra = 10° and Pr = 1. Tubes with smaller axis ratio have
higher Nu values in the range of 7 = 60°-120° while the
differences are relatively small on the rest of the tube. All
the curves in Fig. 7 posses a minimum at the topmost
point on the tube surface (1 = 0). As 7 increases from
topmost point (1 = 0), Nu increases for all values of Ar,
reaching a maximum and then gradually decreases till
the forward stagnation point at = 180°. The only ex-
ception in the case of Ar = 0.998 where Nu continues to
increase reaching its maximum value at n = 180°. It is

10

Ar=0.80
27 — Ar=0.998

1 T T T T T
0 300 60 90° 120" 150 180

n

Fig. 7. The effect of axis ratio on the local Nusselt number distribution
along the ellipse surface for the case of Rz = 10° and Pr = 1.0.
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noted that with the increase of Ar not only the maxi-
mum value gets smaller but also the rate of decrease in
Nu toward the front stagnation decreases. This leads to
an increase in Nu at y = 180° as Ar increases. Fig. 8
shows the surface temperature distribution, @, for the
same cases presented in Fig. 7. This figure verifies that
there is an inverse relationship between ® and Nu as
shown in Fig. 7. Thus the surface temperature reaches
its minimum value at the point of maximum heat
transfer coefficient (i.e. maximum Nu). Also, the effect of
decrease of Ar is to decrease the steady mean surface
temperature.

Fig. 9 shows the steady-state temperature decay
along the extension of ellipse major axis (p = 0°) and
minor axis (5 =90°) for the case of Ra = 10* and
Ar = 0.5 at the three Prandtl numbers of 0.1, 1.0, 10.
The temperature gradient at the tube surface Y* = 0 at
the two end of both minor and major axis (y = 0°,
n = 90°) is the same for fixed Pr. This confirms the fact
that the heat flux is constant. Also, as Pr increases the
temperature at the tube surface decreases as a result of
increasing heat transfer coefficient. Moreover, slow
temperature decay within the plume region is observed
along the minor axis (n = 0°) whereas the decay along
the major axis 7 = 90° is much faster, showing a thinner
thermal boundary layer along # = 90°. However, as Pr
increases the thermal boundary layer becomes thinner
resulting in much faster temperature decay along
n = 90°. The velocity distribution in # direction along
the ellipse major axis 7 = 90° is also shown in Fig. 10
for the same case presented in Fig. 9. The figure shows
that the velocity increases rapidly near the surface until
it attains a maximum value and then decreases, ap-
proaching the zero value far away from the surface. This
distance at which the velocity approaches zero value

0.8
Ra=10%, Pr=1.0
0.7 - '
-------- Ar=0.05
0 6 4 m===- Ar:0.20
- --- Ar=0.50

Ar=0.80

-

60’ 90" 120° 150 180
n

Fig. 8. The effect of axis ratio on the temperature distribution along the
ellipse surface for the case of Ra = 10° and Pr = 1.0.

0.9 T
vol Ra=10%, Ar=0.5

0.7

0.6

Fig. 9. The effect of Prandtl number on the temperature distribution
with distance along the minor axis (1 = 0°) and along the major axis
(7 = 90°) for the case of Ra = 10* and Ar = 0.5.

increases as Pr increases as a result of increasing the
boundary-layer thickness.

Fig. 11 shows the effect of Pr on the streamline and
isotherm patterns following a sudden tube heating for
the case of Ra = 10* and Ar=0.5 at =1 when the
thermal field in the vicinity of the tube surface almost
reaches the steady state. This figure verifies that at
higher values of Pr the thermal boundary layer gets
thinner and the flow field approaches to the steady state
very rapidly as it was observed in Fig. 6. The streamline
and isotherm patterns are shown in Fig. 12 for the case
of Ra = 10°, Pr = 1.0 and the three axis ratios of 0.25,

20

Ra=10%, Ar=0.5
n=90°

15 -

'25 T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
*

Y

Fig. 10. The 5-velocity component distribution with distance along the
major axis (1 = 90°) for the case of Ra = 10*, Ar = 0.5 and at Pr = 0.1,
1.0, 10.
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Fig. 11. The streamlines (right) and isotherms patterns (left) at time
¢t = 1 for the case of Ra = 10* and Ar = 0.5: (a) Pr = 0.1, (b) Pr = 1.0,
(c) Pr=10.

0.5 and 0.75 at t = 0.6. The figure shows that the effect
of the axis ratio on the streamlines and isotherms es-
pecially near the tube surface. At Ar = 0.25 the flow
separation from the tube surface is observed. On the
other hand there is no flow separation for the axis ratios
of Ar = 0.5 and 0.75. Also, axis ratio seems to have no
effects on the flow and the thermal fields far away from
the tube surface. Moreover, the patterns of Fig. 12
shows that as the ellipse gets thinner the flow resistance
increases, resulting in a decrease in average heat transfer
coefficient (i.e. an increase of mean surface tempera-
ture). This is consistent with the results of Table 1.

6. Conclusions
The problem of laminar free convection from a hori-

zontal tube of elliptic cross-section is investigated when
the tube is suddenly heated with uniform flux. The tube

Fig. 12. The streamlines (right) and isotherms patterns (left) at time
t=0.6 for the case of Ra=10° and Pr=1.0: (a) Ar=0.25, (b)
Ar=0.5, (c) Ar =0.75.

is placed in an initially quiescent fluid of infinite extent.
The full governing equations of motion and energy are
solved in order to predict the details of the velocity and
thermal boundary layers. The study is focused on the
effects of modified Rayleigh number, Prandtl number
and axis ratio. The results are obtained in the ranges of
Rayleigh number 10°<Ra< 107, Prandtl number
0.1<Pr<10 and axis ratio 0.05<Ar<0.998. The
method of solution is verified by comparing the average
Nusselt number as well as the surface temperature dis-
tribution with the available theoretical data. The
agreement is found to be satisfactory. The details of the
velocity and thermal boundary layers are obtained and
accordingly the velocity distribution at a given section;
average Nusselt number as well as mean temperature
distributions are determined for various cases. In addi-
tion the variations of vorticity, the local Nusselt number
and temperature distribution are calculated over the
cylinder surface. The streamlines and isotherms patterns
are plotted for different Rayleigh numbers to show some
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details of the velocity and temperature fields. This study
reveals that the average Nusselt number increases with
the increase of Rayleigh number and/or Prandtl number,
resulting in a decrease in mean surface temperature. The
results are also examined at high Rayleigh numbers and
it is observed that the buoyancy driven flow separates
from the tube surface at low values of Prandtl number
when the axis ratio is small.
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